Paper ID:

Roll No. \square

B. TECH.

(SEM. I) THEORY EXAMINATION 2018-19
ENGINEERING MATHEMATICS -I
Time: 3 Hours
Total Marks: 100
Notel:.Attemalthectiohfsequiaramissidgtatheohoosetitably.

SECTIO-M

1. Attempt ALL the parts:
$(2 \times 10=20)$
(a) Find y, if $y=\sin x$ at $x=0$.
(b) If $u x, y=\sqrt{x}+\bar{y}$, find the value of $x-+2 x y-+y-$.
(c) Calculate - for $x=e \cos v$, and $y=e \sin v$.
(d) Prove that $f a x=f x+a-1 x f \quad x+-f \quad x+\square \quad x+\cdots \ldots \ldots \ldots$.
(e) Reduce the matrix $\begin{array}{lll}1 & 1 & 1 \\ 3 & 1 & 1\end{array}$ into normal form.
(f) Find the inverse of the matrix $A=\begin{array}{ll}3 & 1 \\ 2 & 1\end{array}$.
(g) Find the value of $x-\sqrt{ }{ }^{\sqrt{2}} d x$.
(h) Evaluate $\quad x e d y d x$.
(i) Show that $F \vec{F}=x \quad-y+x \hat{\imath} \quad-2 x y+y \hat{\jmath}$ is irrotational.
(j) State Gauss divergence theoren.

SECTION - B

2. Attempt any THREE ${ }^{\text {n }}$ the following:
(10x3=30)
(a) If $y=\sin a \operatorname{sir} x$, show that
$1-x \quad y \quad-2 n+1 x y \quad-n-a \quad y=0$ and calculate $y \quad 0$.
(b) Find the volume of the largest rectangular parallelepiped that can be inscribed in the ellipsoid $-+-+-=1$
(c) Diagonalise the matrix $A=\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}$
(d) Find the volume of the solid surrounded by the surface $-^{-}+{ }_{-}^{-}+{ }_{-}^{-}=1$.
(e) Verify Stoke's theorem for $\vec{F}=x \hat{\imath}+x y \hat{\jmath}$ integrated round the square whose sides are $x=$ $0, y=0, x=a, y=a$ in the plane $z=0$.

D ownload all N O T E S and PAPE R S at StudentSuvidha.com

SECTION - C

3. Attempt any TWO of the following:
($5 \times 2=10$)
(a) Verify Euler's theorem for the function: $u=$
(b) If $u=f y-z, z-x, x-y$, prove that $-+-+-=0$.
(c) Trace the curve: $y=x$.
4. Attempt any TWO of the following:
$(5 \times 2=10)$
(a) Expand tan - in powers of $x-1$ and $y-1$ upto two degree terms.
(b) Show that $u=-, v=-, w=\square$ are not independent, find the relation among them.
(c) Find the extreme values of $3 x-y+x$.
5. Attempt any TWO of the following:
($5 \times 2=10$)
(a) Show that the system of equations:
$x+3 y-2 z=0,2 x-y+4 z=0, x-11 y+14 z=0$ has a non-trivial solution.
(b) Verify Cayley-Hamilton theorem for the matrix $A=\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}$ and hence find A.
(c) Prove that the each characteristic roots of a unitary matrix are of unit modulus.
6. Attempt any TWO of the follofwing:
(a) Evaluate by changing the order of integration.
(b) Prove that

(c) Show that in the Catenary $y=c \cosh -$, the length of arc from the vertex $x=0$ to any point x, y is given by $s=c \sinh -$.
7. Attempt any TWO of the following:
(a) Find the directional derivative of $\emptyset=5 x y-5 y z+z \neq$ at the point $P 1,1,1$ in the direction of the line $-=-=-$.
(b) Prove that $\operatorname{div} \vec{a} \times \vec{b}=\overrightarrow{b:} \overrightarrow{c u r l} \overrightarrow{a-}-\vec{a}$. curl: \vec{b}
(c) Apply Green's theorem to evaluate $2 x-y d x+x+y d y$ where C is the boundary of the area enclosed by the x-axis and upper half of the circle $x+y=a$.

D ownload all N O T E S and PAPE R S at StudentSuvidha.com

